スポンサーサイト

上記の広告は1ヶ月以上更新のないブログに表示されています。
新しい記事を書く事で広告が消せます。

立体図形その3 すすめてみます、参考書

立体図形の参考書で先日ああ、これはいいのかもな、と思ったものがあります。

ええと、続受験算数の裏技テクニックというやつです。


このシリーズの本はいくつか目を通したことがあるのですが、結構どこの家でも置いてありますね。あとはドラえもんシリーズもよく見かけます。


内容としては、どうでしょう塾の授業を聞いていればそんなに目新しいこともないと思いますが、詳しくは書いてあると思います。あとは裏ワザという風になると、とっつきやすい人もいるのかもしれません。「裏ワザ」というのは数学と算数は違うんだよ、と、そういう意味が込められているかもしれませんね。

子供が学習出来れば理想的ですが、大人が指導するにも使えそうですね。ああ、子供たちはこう考えるんだ、と気づくことができるかもしれません。


算数のすべてを網羅しているわけではないので、「~~算」が苦手だからこれで強化しよう、そんな使い方がいいと思います。

まあ、受験算数すべてを基礎から最難関まで網羅しようとしたらそれこそ電話帳並みの分厚さで何冊か用意しないとっていう話ですね。

この本は基本的なことしか書いてありません。しかし基本を理解できれば応用題というのは自力でどんどん解けていくものなので、やはりこの一冊をよくよく熟読するというのは大事な基礎を養い、それしだいでは応用力も身につくかもしれません。

実際、僕は指導中使うことはなかったし、今後もないでしょうね。大体書いてあることは概ね言いたいことと逸れていないし、指導方法というか考え方も、受験算数という枠で見れば裏ワザでもなく、ごくごくまっとうなことが書いてあると思います。


だから趣味の読み物という扱いで「これですごいできるようになった」と思いこみ過ぎないよう注意したいです。この本で理解したことを実践して初めて力になると考えたほうがいいと思います。


立体図形に関しても基本なのですがとても重要なことが書かれています。

立体を切断する際の性質とでも言うのでしょうか、基本的な考え方が丁寧に書いてあります。実物で実験するのもいいですが、移動中などでこの本を読んで立体図形の切断がかなり理解できる子供もいるかもしれません。

繰り返しですがこの本に載っているレベルが直接本番では出ませんよ、ただ単元を学習する前段階の内容としてはいいと思います。6年生でも苦手な子供は読んでみると理解するきっかけになるかもしれません。


と、今日は少し参考書の紹介をしてみました。紹介というほどでもないですね、すごい独断的な意見になりました。

僕なんかはね、大変だとは思うんですが、保護者がこういうのを読んで子供に指導する、というのも楽しいような気がするのですが、まあ、実際受験生の親ではないのでいい加減なことは言えませんが。


さあて、前回の問題の答えを簡単に。

(1)、(2)ともに出来上がる立体は正八面体です。(2)は想像するのが難しいかもしれません。正四面体の各頂点を切断すると倒れた感じの正八面体ができます。

立体の体積は複雑に立体になった時は、①分解するか②大きい立体から小さい立体を引く、その二つのどちらかで求めます。
どうしよう、どうしよう、とやみくもに考えずにとそうやって考え方のアプローチを狭めることも重要でしょうね。
だからどんな応用題だったり奇抜な問題でも、何もない大海原を進むのではなくやはり方角がある程度は選択されているわけです。

実はそれを意識して問題に取り組むかどうかというのは随分違います。学力の伸びのも、成績にも影響します。
これはなかなかうまく表現できませんが、また、ね、他の具体例があった時に話せたらいいですね。

(1)からみてみましょうか

(1) の体積は底面積が元の正方形(立方体の一面の)の半分になります。高さは
二つ合わせて立方体と同じなので計算の上ではまとめましょう。もとの立方体の一片を①とおくとこの正八面体は①×①÷2×①÷3=6分の1となります。

答え 正八面体 6分の1倍


(2) の体積は比の問題です。切り取った三角錐と、もとの三角錐(正四面体)の体積
は1×1×1:2×2×2=1:8となります。じゃあ最初の三角錐と残った正八面体の体積比は8:8-1-1-1-1=8:4=2:1です。

答え 正八面体  2分の1倍


図がない分わかりづらいとは思いますが一応基本的なことに触れてみました。

昔じゃこのレベルの問題は画期的な問題だったかもしれませんが今じゃ基礎知識でしょうか、そんな気がします。普通どこの塾のテキストでも解くでしょうね。イヤーぶっちゃけ応用題とかほんと難しいですよね、たまに出題者の答えも間違っていることもあるし、それだけ難度の高い問題が多いと思いえますね。

ということで、今回は立体図形に関して書いてみました。



ブログ村に参加しています。
↓こちらでは様々な中学受験に関する情報が満載です。

塾の話や教育に関して、家での勉強法など多岐にわたります。


なにかしら参考になると思います。


にほんブログ村 受験ブログ 中学受験へ

スポンサーサイト

テーマ : 中学受験
ジャンル : 学校・教育

コメントの投稿

非公開コメント

プロフィール

shioshioshu

Author:shioshioshu
1980年生まれ 男性
慶応中等部出身
担当教科 主に算数
合格実績 麻布、駒東、ラサール、桜蔭、女子学院、渋幕、渋々、慶応普通部、慶応中等部、早稲田中、渋渋、武蔵、サレジオ、広尾、青学、学習院、浦和明の星 等

最近の記事
最近のコメント
最近のトラックバック
月別アーカイブ
カテゴリー
FC2カウンター
オススメ
にほんブログ村 受験ブログ 中学受験へ
ブログ内検索
RSSフィード
リンク
ブロとも申請フォーム

この人とブロともになる

上記広告は1ヶ月以上更新のないブログに表示されています。新しい記事を書くことで広告を消せます。